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An analytic expression for the polarized neutron reflectivity R ¥ (8,A) from a superconductor with
penetration depth A is derived as an exact solution of the 1D Schrodinger equation in the continuum lim-
it. The down-spin solution R ~(8,)) reveals a surprising oscillatory dependence on A within a narrow an-
gular range immediately above the total reflection angle, and in fact vanishes when A and H satisfy cer-
tain conditions. This exact solution is applicable to other scattering problems with a general exponential

dependence in the potential.
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Polarized neutron reflectometry has developed in the
last decade into a new technique to measure the magnetic
field penetration depth A in superconductors [1-5]. The
merit of the method lies in the fact that it provides an ab-
solute measurement of A, and therefore neutron reflec-
tometry has the capability in principle to make a model-
independent determination of A(7). The technique has
been successfully applied to Nb, Pb, and alloys, as well as
to high-T, systems. To interpret the reflectivity data, the
scattering is calculated numerically from an “optical po-
tential” theory, where the three-dimensional (3D) period-
ic nuclear scattering potential is approximated by an
average nuclear potential of a continuum, and the mag-
netic field inside the superconductor is assumed to have
the familiar (London and London [6]) exponential de-
crease with distance below the first critical field H.,,
B(x) =Hexp(—x/A). Since the values for H., are typi-
cally quite small, the magnetic interaction —u- B is usu-
ally much smaller than the nuclear interaction, and hence
below T, the ratio of the spin-dependent reflectivities
R*/R ™ deviates significantly from unity only in the re-
gime just above the critical angle 6. for total reflection.
This is just the regime where the continuum approxima-
tion works very well. We have found an analytic solution
for R ¥(6,1) for this problem that is valid throughout
the entire angular range of interest. The down-spin solu-
tion R ~(6,A) in particular reveals a surprising oscillatory
dependence on A within a narrow angular range immedi-
ately above the total reflection angle, and in fact vanishes
when A and H satisfy certain conditions. This exact solu-
tion is applicable to other scattering problems with an ex-
ponential dependence in the potential, such as neutron
reflectometry to determine the magnetization density
profile at the surface of a ferromagnet [7].

We start with the 1D Schrédinger equation describing
a neutron incident at angle 6 on a plane-surfaced and
semi-infinite superconducting sample placed in an applied
magnetic field H, and approximate the periodic arrange-
ment of nuclei in the sample by a homogeneous continu-
um. This is a classic textbook 1D problem: To the in-
coming neutron the sample is represented as a simple po-

tential barrier which consists of the neutron’s nuclear in-
teraction Vy with the average nuclear scattering potential
and its magnetic interaction with the screening super-
currents in the sample. The change of the potential at
the surface is then

2
Vi(x)={%]Nhip-niexp(—xm—l], (1)

where the first term is ¥y and the * for the second
(magnetic) term refers to incident neutrons with spin up
or spin down. Here /V is the number density and b is the
coherent nuclear scattering amplitude. This is of course
an idealized potential, where we neglect such processes as
nuclear absorption, incoherent and phonon scattering,
surface roughness, etc. When 6 is small enough such that
h2k?}/2m is below this potential step the neutron is un-
able to overcome the barrier and therefore is totally
reflected. The critical angle 6 is defined when the two
energies are equal, and when 0 exceeds the critical angle
then the neutron has a probability for both reflection and
transmission. The reflectivity R * (8) depends of course
on the details of the magnetic term in ¥ * (x), particular-
ly when 6 is near the critical angle, and hence a measure-
ment of R ¥ can serve to determine the magnetic field
penetration depth A. We note that for thermal and cold
neutrons 0, is typically below 1°, and this is the conven-
tional regime for neutron reflectometers [2,3,8], while for
very cold neutrons 6, can be much larger than 1°, and for
ultracold neutrons 8. — 90° [9]. Our result applies to all
these cases.

We define uy=4nNb and up=*2uHm/h? Then
Schrodinger’s equation is

2
i;"ﬁﬁ+[k3—u(x)]w(x)=o, @
X
with
_ 0, x<0,
ulx) = uy —upll —exp(—x/A)], x=0, 3)

where k, =k sin(8) and x = 0 refers to the region inside
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FIG. 1. Sketch of the interaction potential u(x) for spin-up
(+) neutrons and spin-down (—) neutrons. The subscripts N
and M indicate nuclear and magnetic interactions, respectively.
Note that uy and |ua| have not been drawn to scale here, as
|ua| is typically 2 orders of magnitude smaller than uy.

the superconductor. Figure 1 shows a sketch of u(x) for
spin-up and spin-down neutrons. In the region x = 0 we
define k=+(kZ—un+uy)'"? and letting y(x) =d(x)
xexp(ixx) and changing variables to &=A%uyexp(—x/
1), we obtain an equation for ®:

d*® dod
+ —_)7 —_— - — .
d§2 (1 —2ixA) dz d=0

The expected asymptotic behavior that

'3 @

w(x)— Cexplixx) as x— +oo

imposes the boundary condition on ® that ®— C as

(k= A = 2ixA)oF (1 = 2ixMA 2upg) = id2upg oF 1 (2 = 2ikh\ 2up)

&— 0, where C is a constant. We can now make a series
expansion of @ in &; we find that the solution to Eq. (4) is

D=CoF (1 —2ik\;¢) (%)
where oF| is a generalized hypergeometric function de-

fined by [10]

4+ oo

QF[(a;Z)E Z

n=0

I'(a)z"
I'(a+n)n!

for all z. We have that oF(a;0) =1, which automatically
gives the correct boundary condition for ® as x — + oo,
We note that oF(a;z) with integer a is simply related to
the Bessel function J,—; for z=<0 and the modified
Bessel function I, - for z =0 via

(6)

r'(n)J,—(2]z]|"?)

|Z|("‘l)/2 if z=<0, (7a)
oF1 2= p i, 12172
—-pp fz=0. (7b)
z
The solution of w(x) in the x = O region is then
w(x) =CoF (1 = 2ikAA 2uprexp(— x/A) Y explikx) . (8)

At x =0, both y(x) and dwy/dx must be continuous.
Denoting r as the amplitude of the backscattered wave
and normalizing the incoming wave to unity, we find that
the solution for r is

,= )
(kx +IA —2ikM)oF 1 (1 — 2ikAsh 2upg )+ id 2upg oF 1 (2 — 2ixcA:) 2upg)

Hence the reflectivity R =|r|? is

9

| = OACL —200)0F 1 (1 = 2ikA 2ung) = 02y oF 1 (2= 2ikAA pg) 2
(kx + 1A = 2ikcA)oF 1 (1 = 2ikA;A 2upg ) + ik 2upg oF 1 (2 — 2ichch2upg) |

We note that since k,=(2n/A,)sin6, where A, is the
neutron’s wavelength, the reflectivity R can be regarded
as a function of A, for a fixed incident angle 6, or as a
function of 6 for a selected wavelength. The former is
most appropriate for pulsed neutron sources while the
latter is the practice at reactor-type neutron sources.

We take the case when the external magnetic field H is
nonzero but below H,, so that the sample is in its Meiss-
ner state; H is typically on the order of a few hundred
oersteds or less. The region of total reflection (R =1) be-
comes ky < (uy —up) 172 We have two different critical
angles for spin-up (+) and spin-down (—) neutrons, re-
spectively:

0. F =sin ~'[(un F |lunp|) V200/21] . (11)

Note that 6. > 6}, If we take typical values of A,
=2.35 A, H=500 Oe, and uy=4.98x10"> A~2 (ap-
propriate for niobium), the critical angles are 6.
=0.1489° and 6, =0.1533°, and the critical angle split-
ting is 6,” — 6.5 =0.0044°.
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(10)

Figure 2 shows R *(6) (dash-dotted curve) and
R ~(8) (solid curve) for three different choices of the
penetration depth A: (a) 400 A, (b) 1000 A, and (c¢)
1600 A, with A,=235 A, H=500 Oe, and uy
=4.98x10 "> A~2 The dash-double-dotted line is the
reflectivity for H =0 (nuclear potential only). First con-
sider the curves for R 7(0). As 0 exceeds 6.7, R T (8) de-
creases monotonically, and the larger A is, the slower
R (6) decreases above 6. This is the type of behavior
expected based on previous (numerical) results. The be-
havior of R ~(8), on the other hand, is surprising, as it
does not always decrease monotonically as a function of 8
above 6.. For example, at A=1000 A, R ~(#) almost
dips to zero immediately above 6, [Fig. 2(b)]. Beyond
this dip, R ~(8) is slightly above R *(6), reflecting the
fact that the asymptotic value of u ~(x) is above u ¥ (x)
by 2|up| (Fig. 1). As 6 continues to increase, R ~(8)
and R *(0) merge into one curve as 2|uy | becomes small
compared to the kinetic energy term controlled by k,
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FIG. 2. Reflectivity calculated from Eq. (10) for spin-up
[R*(6,n) (dash-dotted curves)] and spin-down [R ~(8,1)
(solid curves)] neutrons, as a function of 0, for three different
values of the magnetic penetration depth A. Parameters used
for plotting are A, =2.35 A, H=500 Oe, and uny =4.98 x 10~
A ~2 (for niobium). (a) A=400 A, (b) 1000 A, and (c) 1600
A. The dash-double-dotted line in (a) is the reflectivity of
H =0.

=ksin@. Thus these spin-dependent effects are most dis-
cernible in the vicinity of the critical angles.

The “dip” in the reflectivity profile for spin-down neu-
trons shown in Fig. 2(b) was an unexpected feature re-
vealed by the analytic expression for R(6,1). In actual
reflectivity measurements from thin films we typically see
oscillatory behavior in R(8) due to interference from the
waves scattered from the front and back surfaces of the
sample. In the present case, however, the sample is as-
sumed to be infinitely thick and hence this structure in
R ~(68) must have a different nature. This A-dependent
resonance effect is worth studying because it has the po-
tential to be developed into a sensitive way to measure A.

To study the anomalous resonant transmission analyti-
cally, let us consider Eq. (10) in the x range where
0 < kA K 1. For the magnetic field range we are consider-
ing and for most materials this guarantees that 0
< k/kxe <1, where ky.=(uy —up) 72" We therefore ex-
pand both the numerator and the denominator of r in Eq.
(9) to first order in xA and x/ky., and write r as

= Uitifa) — (fs+ifadxr
"= =i+ (= ifDRA

where f1, f>, f3, and f4 are real functions defined by
flfk“}\.()pl(l;lzu/u), sz —lZuM0F|(2;k2uM) ,
F3=0F 1 (0 2upg) + 20 2upg oF {1 (250 2upg)

12

and

Sa=2kx M oF 1 (A 2upg) +oF i (LA 2up)]

where oF || denotes the first derivative of oF| with respect
to its first variable. These four dimensionless functions
are independent of 6 and the neutron wavelength A,.
Rather, they are determined only by the shape and mag-
nitude of the potential through parameters such as uy,
upy, and A. We remark that since the oF(a;z) with in-
teger a are simply related to Bessel functions [Eq. (7)],
and noting that J,(z) is oscillatory while I,(z) is mono-
tonic, we may anticipate an oscillatory dependence of r
on A for spin-down neutrons (uy <0).
In this k range the reflectivity becomes

(1 —f3x1)2+(f2—f4x7»)2
R= .
(f1+ f3x0) 2+ (f+ faxh) 2

Hence a sufficient condition for a total transmission to
occur is given by simultaneously satisfying f| =f3xA and
f2=faxA. Eliminating x\ we find

0<£‘—=Q<<1. (14)

S3  fa

This functional dependence means that it is the shape of
the potential curve that determines whether this total
transmission may occur, independent of the wave vector
ky or angle 6. The value of k, (and 6) at which this total
transmission will occur can be calculated by using xA
=f,/f3. An approximate expression for Eq. (14) can be
obtained by noting that the solutions are close to f==0,
which means oF(1;A%us) =0. Hence the condition for
the total transmission (of the down-spin state) becomes
Jo(rQuHmM/h?)'2) =0, so that to a good approxima-
tion 2A(2uHm/h?*)'? needs to be a root of the zeroth-
order Bessel function. Solutions to any accuracy may be
obtained by graphically solving Eq. (14). We emphasize
that here it is the shape of the potential curve that deter-
mines whether this total transmission may occur. In con-
trast to the ky-oscillatory type of resonant transmission,
we refer to the anomalous transmission discussed above
as the potential-profile-dependent and single-dip type.
Both have the same physical origin— the reflected waves
add up destructively. Indeed we have found a similar
anomalous transmission in a very simple two-step poten-
tial profile.

The angular difference between the total transmission
angle 6, and the critical angle 6, can be calculated from

k2 —kZ = 1/f)2. (15)

When the total transmission condition [Eq. (14)] is met,
fi/f3 is much smaller than 1, and therefore the right-
hand side of Eq. (15) is very small and 6y is very close to
6. . Then Eq. (15) can be rewritten as

2
}\vn fl
e [ S } , 1)

(13)

sinfy —sinf, =

where we note that the right-hand side is proportional

79



VOLUME 70, NUMBER 1

PHYSICAL REVIEW LETTERS

4 JANUARY 1993

ERREARS
R
Bl o See,
IR
LTI
LA

R7(6,4)

o o © o

0 (degree)

FIG. 3. Reflectivity R ~(8,1) calculated from Eq. (10) for
spin-down neutrons, plotted as a function of both variables 0
and A. Parameters A, H, and un used are the same as those in
Fig. 2. The oscillatory dependence of R ~(6,A) on A can be
clearly seen.

to the neutron wavelength. Taking H =500 Oe, uy
=498x107% A72 and A==1002 A where the first
total transmission occurs, we have f1/f3=0.0545
and ky=Cun+|up|)2=0.00715 A~', which gives
sinfy —sin@,” =3.3x10"%,, or 6,—6, =(2x107¢
cos@; )A, where the angles are in degrees. Only in the
very cold to ultracold neutron regime will this angular
difference be possible to resolve experimentally with
present instrumentation. The resonance condition may be
tuned by varying the magnetic penetration depth (with
temperature) or by varying the applied field.

Since the condition on the occurrence of the total
transmission depends on an oscillatory Bessel function,
the A dependence of R ~(9,1) for #2 6, must also be
quasiperiodic. Figure 3 is a 3D plot of R ~(6,A) of Eq.
(10) as a function of 6 and A to show its oscillatory
dependence on A. The parameters A,, H, and uy are the
same as those used in Fig. 2.

We have focused our discussions on neutron reflec-
tometry measurements of the magnetic penetration depth
A in superconductors, as this was the problem which led
us to this investigation. However, these results are not re-
stricted to neutron scattering; the exact solution [11] for
R £ (8,1) can be applied to other scattering problems

80

where the scattering potential has an exponential depen-
dence with distance. Another example for neutrons is the
problem of the magnetization at the surface of a fer-
romagnet, where the magnetization in the surface layer
is expected to deviate from the bulk by [7] Au(z)
=Ausexp(—z/&), where & is the magnetic coherence
length, and both Au; and & are temperature dependent.
Our solution can be immediately applied to this system,
with & replacing A. Indeed polarized neutron reflec-
tometry has been shown to be a sensitive probe to deter-
mine the temperature dependence of the magnetization at
the surface of ferromagnets.
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